Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Baeza-Yates, Ricardo; Bonchi, Francesco (Ed.)Massive amount of unstructured text data are generated daily, ranging from news articles to scientific papers. How to mine structured knowledge from the text data remains a crucial research question. Recently, large language models (LLMs) have shed light on the text mining field with their superior text understanding and instructionfollowing ability. There are typically two ways of utilizing LLMs: fine-tune the LLMs with human-annotated training data, which is labor intensive and hard to scale; prompt the LLMs in a zero-shot or few-shot way, which cannot take advantage of the useful information in the massive text data. Therefore, it remains a challenge on automated mining of structured knowledge from massive text data in the era of large language models. In this tutorial, we cover the recent advancements in mining structured knowledge using language models with very weak supervision. We will introduce the following topics in this tutorial: (1) introduction to large language models, which serves as the foundation for recent text mining tasks, (2) ontology construction, which automatically enriches an ontology from a massive corpus, (3) weakly-supervised text classification in flat and hierarchical label space, (4) weakly-supervised information extraction, which extracts entity and relation structures.more » « less
- 
            Baeza-Yates, Ricardo; Bonchi, Francesco (Ed.)Fine-grained entity typing (FET), which assigns entities in text with context-sensitive, fine-grained semantic types, is a basic but important task for knowledge extraction from unstructured text. FET has been studied extensively in natural language processing and typically relies on human-annotated corpora for training, which is costly and difficult to scale. Recent studies explore the utilization of pre-trained language models (PLMs) as a knowledge base to generate rich and context-aware weak supervision for FET. However, a PLM still requires direction and guidance to serve as a knowledge base as they often generate a mixture of rough and fine-grained types, or tokens unsuitable for typing. In this study, we vision that an ontology provides a semantics-rich, hierarchical structure, which will help select the best results generated by multiple PLM models and head words. Specifically, we propose a novel annotation-free, ontology-guided FET method, ONTOTYPE, which follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates, and refines its type resolution, under the local context with a natural language inference model. Our experiments on the Ontonotes, FIGER, and NYT datasets using their associated ontological structures demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods as well as a typical LLM method, ChatGPT. Our error analysis shows that refinement of the existing ontology structures will further improve fine-grained entity typing.more » « less
- 
            Baeza-Yates, Ricardo; Bonchi, Francesco (Ed.)Fine-grained entity typing (FET) is the task of identifying specific entity types at a fine-grained level for entity mentions based on their contextual information. Conventional methods for FET require extensive human annotation, which is time-consuming and costly given the massive scale of data. Recent studies have been developing weakly supervised or zero-shot approaches.We study the setting of zero-shot FET where only an ontology is provided. However, most existing ontology structures lack rich supporting information and even contain ambiguous relations, making them ineffective in guiding FET. Recently developed language models, though promising in various few-shot and zero-shot NLP tasks, may face challenges in zero-shot FET due to their lack of interaction with task-specific ontology. In this study, we propose OnEFET, where we (1) enrich each node in the ontology structure with two categories of extra information: instance information for training sample augmentation and topic information to relate types with contexts, and (2) develop a coarse-to-fine typing algorithm that exploits the enriched information by training an entailment model with contrasting topics and instance-based augmented training samples. Our experiments show that OnEFET achieves high-quality fine-grained entity typing without human annotation, outperforming existing zero-shot methods by a large margin and rivaling supervised methods. OnEFET also enjoys strong transferability to unseen and finer-grained types. Code is available at https://github.com/ozyyshr/OnEFET.more » « less
- 
            Koutra, Danai; Plant, Claudia; Gomez-Rodriguez, Manuel; Baralis, Elena; Bonchi, Francesco (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
